VALUATION AND RISK ANALYSIS (SIMILAR TO CORPORATE INVESTMENT APPRAISAL) João Carvalho das Neves Professor of Leadership & Finance ISEG, Universidade de Lisboa jcneves@iseg.ulisboa.pt ### DECISIONS UNDER RISK AND UNCERTAINTY #### **RISK** * Unknown outcome in the future which can be attributed to the probability of the event #### **UNCERTAINTY** * Unknown outcome in the future which can not be attributed to the probability of event ### SOURCES OF RISK AND UNCERTAINTY Development of demand, prices and costs No. of similar investments Bias of individuals towards pessimism or optimism, or by factors which should not be considered Changing economic environment that invalidates the past experience Misinterpretation of data Incorrect analysis Dependence on management skills Inflexibility of the investment Asset obsolescence © J.C. NEVES, ISEG, 2020 # METHODS FOR ANALYSIS OF RISK AND UNCERTAINTY INTUITIVE APPROACH **Qualitative/Subjective** Payback period adjusted to risk Discount rate adjusted to risk Cash flow adjusted to risk ANALYTICAL APPROACH Probabilistic distribution Decision trees NPV break even-point Sensitivity analysis Scenario analysis Monte Carlo simulation Decision theory © J.C. NEVES, ISEG, 2020 # NPV BREAK-EVEN Use Goal Seek in EXCEL © J.C. NEVES, ISEG, 2020 5 # SENSITIVITY ANALYSIS Se **Data Table Analysis** in EXCEL - One way - Two ways ## SCENARIO ANALYSIS Scenarios can be based in most varied factors such as: - * Macro-economics (inflation, GDP growth, unemployment, etc.) - Political (change of government, no change in government policy, etc.) - Industry based (level of competition, innovation, etc.) - Company (growth, sales gross margin, restructuring costs and savings, etc.) See Tools/Scenarios in EXCEL © J.C. NEVES, ISEG, 2020 7 #### **DEVELOPMENT OF SCENARIOS** - 1) Selection of critical variables - 2) Selection of values for the variables in each scenario - 3) Calculation of PV for each scenario - 4) Analysis of value in each scenario - 5) Decide on the asset valuation (or equity valuation) given the value of each scenario. You may attribute probabilities to each scenario and obtain a weighted valuation © J.C. NEVES, ISEG, 2020 ## SCENARIO ANALYSIS LIMITATIONS Scenarios are discrete - Optimistic, Most probable, Pessimistic Complexity of analysis grows very quickly with the increase of critical variables (e.g.: 15 variables x 3 scenarios => 45 Expected values) There is no optimal recommendation on how to use the results © J.C. NEVES, ISEG, 2020 # WHICH DISTRIBUTIONS SHOULD YOU USE? | Gamma | The possible occurrences in any unit of measurement is not limited The occurrences are independent The average number of occurrences is constant from unit to unit | Applied for physical
quantities, such as the
time between events
when the event
process is not
completely random. | Demand for expected
number of units sold
during lead time,
meteorological
processes (pollutant
concentrations) | |---------------|--|--|---| | Logistic | Conditions and parameters are complex.
See: Fishman, G. Springer Series in
Operations Research. NY: Springer-
Verlag, 1996. | Describes growth. | Growth of a
population as a
function of time, some
chemical reactions | | Pareto | Conditions and parameters are complex.
See: Fishman, G. Springer Series in
Operations Research. NY: Springer-
Verlag, 1996. | Analyzes other
distributions
associated with
empirical phenomena. | Investigating
distributions
associated with city
population sizes, size
of companies, stock
price fluctuations | | Extreme Value | Conditions and parameters are complex.
See: Castillo, Enrique. Extreme Value
Theory in Engineering. London:
Academic Press, 1988. | Describes largest
value of a response
over time or the
breaking strength of
materials. | Largest flood flows,
rainfall, and
earthquakes, aircraft
loads and tolerances | | Neg. Binomial | Number of trials is not fixed Trials continue to the r th success (trials never less than r) Probability of success is the same from trial to trial | Models the distribution of the number of trials or failures until the r th successful occurrence. | Number of sales calls
before you close 10
orders | Tech support: 800-373-5885 (in US) 303-534-1515 (outside US) helpdesk@decisioneering.com © J.C. NEVES, ISEG, 2020 13 # WHICH DISTRIBUTIONS SHOULD YOU USE? | Itiangular | The minimum is fixed The maximum is fixed The maximum is fixed I has a most likely value in this range, which forms a triangle with the minimum and maximum | When you know the
minimum, maximum,
and most likely
values, popular for
when you have limited
data. | Sales estimates,
number of cars sold in
a week, inventory
numbers, marketing
costs | |------------|---|--|--| | Uniform | Minimum is fixed Maximum is fixed All values in range are equally likely to occur | When you know the
range and all possible
values are equally
likely. | A real estate appraisal,
leak on a pipeline | | Custom | Very flexible distribution, used to represent a situation you cannot describe with other distribution types C an be either continuous or discrete or a combination of both Used to input an entire set of data points from a range of cells | | | | Less co | mmonly used distributions are listed be | low and on the back si | de of the card. | | Binomial | For each trial, only 2 outcomes are possible; usually, success or failure The trials are independent The probability is the same from trial to trial | Describes the number of times an event occurs in a fixed number of trials, also used for Boolean logic (true/false or on/off). | Number of heads in 10
flips of a coin,
likelihood of success
or failure | | Poisson | Number of possible occurrences is not limited Occurrences are independent Average number of occurrences is the same from unit to unit | Describes the number
of times an event
occurs in a given
interval (usually time). | Number of telephone
calls per minute,
number of defects per
100 square yards of
material | Copyright @2000, Decisioneering, Inc. # WHICH DISTRIBUTIONS SHOULD YOU USE? #### **DECISIONEERING** | Exponential | The distribution describes the time between occurrences Distribution is not affected by previous events | Describes events that recur randomly. | Time between
incoming phone calls,
time between
customer arrivals | |----------------|---|--|--| | Geometric | Number of trials is not fixed Trials continue until the first success Probability of success is the same from trial to trial | Describes the number of trials until the first successful occurrence. | Number of times you
spin a roulette wheel
before you win, how
many wells to drill
before you hit oil | | Hypergeometric | Total number of items (population) is fixed Sample size (number of trials) is a portion of the population Probability of success changes after each trial | Describes the number of times an event occurs in a fixed number of trials, but trials are dependent on previous results. | Chance of a picked
part being defective
when selected from a
box (without replacing
picked parts to the box
for the next trial) | | Weibull | This flexible distribution can assume the properties of other distributions. When shape parameters equal 1, it is identical to Exponential. When equal to 2, it is identical to the Rayleigh. | Fatigue and failure
tests or other physical
quantities. | Failure time in a
reliability study,
breaking strength of a
material in a control
test | | Bet <u>a</u> | Range is between 0 and a positive value Shape can be specified with two positive values, alpha and beta | Represents variability
over a fixed range,
describes empirical
data. | Representing the
reliability of a
company's devices |